Reinforcement Learning-based Spectrum Sharing for Cognitive Radio
نویسنده
چکیده
TAO JIANG, Ph.D. THESIS, COMMUNICATIONS RESEARCH GROUP, UNIVERSITY OF YORK 2011 Abstract This thesis investigates how distributed reinforcement learning-based resource assignment algorithms can be used to improve the performance of a cognitive radio system. Decision making in most wireless systems today, including most cognitive radio systems in development, depends purely on instantaneous measurement. The purpose of this work is to exploit the historical information the cognitive radio device has learned through the interactions with the unknown environment. Two system architectures have been investigated in this thesis. A point-to-point architecture is examined first in an open spectrum scenario. Then, for the first time distributed reinforcement learning-based algorithms are developed and examined in a novel two-hop architecture for Beyond Next Generation Mobile Network. The traditional reinforcement learning model is modified in order to be applied to a fully distributed cognitive radio scenario. The inherent exploration versus exploitation trade-off seen in reinforcement learning is examined in the context of cognitive radio. A two-stage algorithm is proposed to effectively control the exploration phase of the learning process. This is because cognitive radio users will cause a higher level of disturbance in the exploration phase. Efficient exploration algorithms like pre-partitioning and weight-driven exploration are proposed to enable more efficient learning process. The learning efficiency in a cognitive radio scenario is defined and the learning efficiency of the proposed schemes is investigated. Results show that the performance of the cognitive radio system can be significantly enhanced by utilizing distributed reinforcement learning since the cognitive devices are able to identify the appropriate resources more efficiently. The reinforcement learning-based ‘green’ cognitive radio approach is discussed. Techniques presented show how it is possible to largely eliminate the need for spectrum sensing, along with the associated energy consumption, by using reinforcement learning to develop a preferred channel set in each device.
منابع مشابه
Efficient Exploration for Reinforcement Learning Based Distributed Spectrum Sharing in Cognitive Radio System
In this paper, we investigate how distributed reinforcement learning-based resource assignment algorithms can be used to improve the performance of a cognitive radio system. Today’s decision making in most wireless systems include cognitive radio systems in development, depends purely on instantaneous measurement. Two system architectures have been investigated in this paper. A point-to-point a...
متن کاملPerformance of distributed multi-agent multi-state reinforcement spectrum management using different exploration schemes
0957-4174/$ see front matter 2013 Elsevier Ltd. A http://dx.doi.org/10.1016/j.eswa.2013.01.035 ⇑ Corresponding author. Tel.: +1 514 577 9759. E-mail addresses: [email protected] (A.H.R. K (R. Sabourin), [email protected] (F. Gagnon). This paper introduces a novel multi-agent multi-state reinforcement learning exploration scheme for dynamic spectrum access and dynamic spectrum sharing ...
متن کاملCollaborative Anti-jamming in Cognitive Radio Networks Using Minimax-Q Learning
Cognitive radio is an efficient technique for realization of dynamic spectrum access. Since in the cognitive radio network (CRN) environment, the secondary users (SUs) are susceptible to the random jammers, the security issue of the SU’s channel access becomes crucial for the CRN framework. The rapidly varying spectrum dynamics of CRN along with the jammer’s actions leads to challenging scenari...
متن کاملThe Optimal MMSE Transceiver Design for IoT-oriented Cognitive Radio Systems
This paper studies interference alignment scheme and minimum mean square error (MMSE) improvement in Internet of Things (IoT)-oriented cognitive systems, where IoT devices share the licensed spectrum by cognitive radio in spectrum underlay. Target to manage the inter-tier interference caused by cognitive spectrum sharing as well as ensure an MMSE at receivers, the interference alignment algorit...
متن کاملSpectrum management of cognitive radio using multi-agent reinforcement learning
Wireless cognitive radio (CR) is a newly emerging paradigm that attempts to opportunistically transmit in licensed frequencies, without affecting the pre-assigned users of these bands. To enable this functionality, such a radio must predict its operational parameters, such as transmit power and spectrum. These tasks, collectively called spectrum management, is difficult to achieve in a dynamic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011